miércoles, 25 de noviembre de 2015

SEMANA XVI

GEOLOGÍA EN LA INGENIERÍA CIVIL


Importancia De La Geología En La Ingeniería Civil.

En ingeniero civil se enfrenta a una gran variedad de problemas, en los que el conocimiento de la geología es necesario. Indudablemente aprenderá mas geología en el campo y en la practica que la que puede enseñarle en la aulas o en el laboratorio de una escuela. Pero este aprendizaje será más fácil y más rápido y su aplicación más eficaz, si en sus cursos de ingeniería se han incluido los principios básico de la geología. merecen citarse especialmente algunas ventajas especifica las cuales algunas de ellas al desarrollare con más pausa a través del trabajo.

  Conocimiento sistematizados de los materiales.
  Los problemas de cimentación son esencialmente geológico. Los edificios, puentes, presas, y otras construcciones, se establecen sobre algún material natural.
  Las excavaciones se pueden planear y dirigir más inteligentemente y realizarse con mayor seguridad.
  El conocimiento de la existencia de aguas subterráneas, y los elementos de la hidrología subterránea, son excelentes auxiliares en muchas ramas de la ingeniería práctica.
  El conocimiento de las aguas superficiales, sus efectos de erosión, su transporte y sus sedimentaciones, es esencial para el control de las corrientes, los trabajos de defensa de márgenes y costas los de conservación de suelos y otras actividades.
  La capacidad para leer e interpretar informes geológicos, mapas, planos geológicos y topográficos y fotografía, es de gran utilidad para la planeación de muchas obras.
  La capacitación para reconocer la naturaleza de los problemas geológicos.
Ingeniería Geológica (Y Del Entorno)

Los ingenieros geólogos aplican los principios geológicos a la investigación de los materiales naturales tierra, roca y agua superficial y subterránea implicados en el diseño, la construcción y la explotación de proyectos de ingeniería civil. Son representativos de estos los dizques, los puentes, las autopistas, los acueductos, los desarrollos de zonas de alojamiento y los sistemas de gestión de residuos. Una nueva rama, la geología del entorno, recoge y analiza datos geológicos con el objetivo de resolver los problemas creados por el uso humano del entorne natural. El más importante de ellos es el peligro para la vida y la propiedad que deriva de la construcción de casas y de otras estructuras en áreas sometidas a sucesos geológicos, en particular terremotos, taludes (véase corrimiento de tierra), erosión de la costas e inundaciones. El alcance de la geología del entorno es muy grande al comprender ciencia física como geoquímica e hidrológica, ciencia biológica y social e ingeniería.

Geología en Obra Hidráulicas

La geología se utiliza de diversas formas en obras hidráulicas entre las cuales podemos mencionar las siguientes.


Pozos de punta captación: 

La mayoría de los problemas de drenaje en los trabajos de ingeniería civil no tienen la magnitud de otros proyectos. Por fortuna, se dispone de otro medios para madeja el agua freática en trabajos pequeños. Estos métodos implican el uso de pozos de captación. El sistema se compone básicamente de una bomba especial y varios pozos de punta de captación para abatir el nivel de agua freática bajo el nivel de la excavación más profunda; así el material que se ve a excavarse es comportamiento es incierto, al sólido; de esta manera se facilita el avance de la excavación y se elimina los problemas causado por el agua. El control del agua freática en la obras de construcción urbana, también es de vital importancia, y solo puede ser efectuado con base en un estricto conocimiento de la capa subyacente local de una detallada geología urbana.


Centrales hidroeléctricas subterráneas: 

La idea de situar centrales hidroeléctrica o de bombeo subterráneas es casi tan conocida, que han dejado de ser novedad en el diseño. Estos es un desarrollo que tuvo lugar a partir de la segunda guerra mundial; aunque a fines del siglo xix, una de las primeras centrales eléctrica o hidroeléctrica canadienses en niágara falls utilizo el subsuelo en un cierto grado. Las turbinas impulsada por agua se situaron en el fondo de unas excavaciones circulares profundas y se conectaron con los generadores situados en la superficie por medio de flechas de acero, y por eso, esta no puede ser considera completamente subterránea.


Cimentación de presas: 

La construcción de una presa almacenadora de agua altera más las condiciones naturales que cualquiera otra obra de la ingeniería civil. Esta es importante por la función que desempeñan: en el almacenamiento de agua para el suministro de avenidas, recreación o irrigación.


Obra de control fluvial: 

Desde hace más de 3000 años el hombre ha tratado de amansar algunos de los grandes ríos del mundo. Las primeras obras de ingeniería civil fueron con toda probabilidad las de control fluvial. La obras fluvial es esencia la regulación de la corriente natural del río dentro de un curso bien definido, generalmente el que suele ocupar la corriente. Ya que la desviación del curso probablemente ocurrirá durante los periodos de caudal de avenida, la obra de control consiste en regular la avenida.


Geología en obras viales:

La geología en obra viales juega un papel muy importante pues la mayoría de las carreteras, túneles, y demás obras viales utilizan la geología para realizar estudio de suelo de los terrenos que se utilizaran para dichas obras. Ahora veremos algunos ejemplos donde se aplica la geología.



Perforación de Lumbreras: 

Una de las partes más especializadas en las excavaciones abiertas es la perforación de lumbreras para el acceso de trabajos de túneles. Existe una experiencia abundante que nos ofrece la industria minera; por cierto, la perforación de lumbreras es una operación de construcción compartida por los ingenieros civiles y los de minas, pues muchas de las galerías de las grandes minas son obras de contratistas en ingeniería civil y muchos ingenieros mineros se les consulta acerca del problema con lumbreras en obras civiles.


Cimentación de Puentes: 

Como antecedente necesario deberá recalcarse la gran importancia de la geología en la cimentación de los puentes. Por muy científicamente que esté diseñada una columna de un puente, en definitiva el peso total del puente y las cargas que soporta deberán descansar en el terreno de apoyo. Para el ingeniero estructural las columnas y los estribos de un puente no son realmente “interesantes”. Sin embargo, debe prestarles un interés más que pasajero, ya que muy menudo el diseño de las cimentaciones compete al ingeniero estructural responsable del diseño de la superestructura.


Campos de Aviación: 

El crecimiento de la aviación civil ha sido extraordinario en los últimos siglos; y es en este por su extensión en donde la geología no es tan determinante como en otros tipos de construcciones. Los campos de aviación modernos tienen que ser áreas muy grandes y bastante planas sin serios impedimentos para volar en los alrededores.


Carreteras: 

Son contadas las obras de ingeniería civil que guardan relación tan estrechamente con la geología como las carreteras. Se puede esperar que todo proyecto de carreteras importante encuentre una gran variedad de condiciones geológicas, puesto que se extienden grandes distancias. Aunque será extraño que una carretera requiera actividades constructivas en las profundidades del subsuelo, los cortes que se realizan para lograr las gradientes uniformes que demandan las autopistas modernas proporcionan por necesidad una multitud de oportunidades de observar la geología. No sólo es atractivo para los conductores, sino que también revelan detalles de la geología local que de otro modo serían desconocidos.


GEOLOGÍA EN EDIFICACIONES

La geología en las edificaciones constituye la zapata en la cual se apoyan todas las edificaciones existentes en la actualidad, pues, se debe realizar siempre un estudio del suelo sobre la cual nosotros los ingenieros civiles debemos construir.
Si no se realizan los estudios del suelo debido la mayoría de las edificaciones con el tiempo pueden tener problemas los cuales son muy difíciles de reparar estando ya la edificación terminada. Ahora veremos un ejemplo de la explotación de canteras para conseguir la piedra para las edificaciones.


Introducción

En este trabajo que hemos realizado voy hablar respecto a la importancia de la geología en el campo de la ingeniería civil, así como mencionare ejemplos prácticos de la aplicación de los conocimientos geológicos aplicados a la ingeniería civil.
Estas definiciones son medios de ayuda y conocimiento para la ingeniería civil, como ciencia al servicio de los hombre y el progreso a favor de esta, así como materia de esta clase para el conocimiento para la rama de la ingeniería.

Conclusión

En este trabajo que he investigado sobre distintos conceptos referente a la importancia de la geología en la ingeniería de la geología en la ingeniería civil, he visto gran importancia que esta tiene en la ingeniería civil y su evolución a través de los años y los distintos avances a través de los años.
Hemos visto la gran importancia que tiene en especial en obras de reconocimiento del terreno, para la futura construcción, por ejemplo, de carretera, también su utilización en la construcción de grandes edificaciones como puentes, presas, entre otras.


lunes, 23 de noviembre de 2015

SEMANA XV


1. RECURSOS NATURALES


Un recurso natural es un bien o servicio proporcionado por la naturaleza sin alteraciones por parte del ser humano; y que son valiosos para las sociedades humanas por contribuir a su bienestar y desarrollo de manera directa (materias primas, minerales, alimentos) o indirecta (servicios ecológicos).
Desde el punto de vista de la economía, los recursos naturales son valiosos para las sociedades humanas por contribuir a su bienestar y a su desarrollo de manera directa (materias primas, minerales, alimentos) o indirecta (servicios).




2. CLASIFICACIÓN
  • Existen varios métodos de categorización de los recursos naturales; estos incluyen fuente de origen, etapa de desarrollo y por su renovabilidad. Sobre la base de origen, los recursos se pueden dividir en:

BIÓTICOS

Los que se obtienen de la biósfera (materia viva y orgánica), como las plantas y animales y sus productos. Los combustibles fósiles (carbón y petróleo) también se consideran recursos bióticos ya que derivan por descomposición y modificación de materia orgánica.

ABIÓTICOS

Los que no derivan de materia orgánica, como el suelo, el agua, el aire y minerales metálicos.

  • Teniendo en cuenta su estado de desarrollo, los recursos naturales pueden ser denominados de las siguientes maneras:

RECURSOS POTENCIALES

Recursos potenciales son los que existen en una región y pueden ser utilizados en el futuro. Por ejemplo, el petróleo puede existir en muchas partes de la India, que tiene rocas sedimentarias, pero hasta el momento en que realmente se perfore y ponga en uso, sigue siendo un recurso potencial.

RECURSOS ACTUALES

Recursos actuales son aquellos que ya han sido objeto de reconocimiento, su cantidad y calidad determinada y se están utilizando en la actualidad. El desarrollo de un recurso actual a partir de un potencial depende de la tecnología disponible y los costos involucrados.

RECURSOS DE RESERVA

La parte de un recurso actual que se puede desarrollar de manera rentable en el futuro se llama un recurso de reserva.

  • La renovación es un tema muy popular y muchos recursos naturales se pueden clasificar como renovables o no renovables. La diferencia entre unos y otros está determinada por la posibilidad que tienen los renovables de ser usados una y otra vez, siempre que la sociedad cuide de la regeneración.

RECURSOS RENOVABLES

Son aquellos que se reponen naturalmente. Las plantas, los animales, el agua, el suelo, entre otros, constituyen recursos renovables siempre que exista una verdadera preocupación por explotarlos en forma tal que se permita su regeneración natural o inducida. Algunos de estos recursos, como la luz del sol, el aire, el viento, etc., están disponibles continuamente y sus cantidades no son sensiblemente afectadas por el consumo humano. 
El uso por humanos puede agotar a muchos recursos renovables pero estos pueden reponerse, manteniendo así un flujo. Algunos toman poco tiempo de renovación, como es caso de los cultivos agrícolas, mientras que otros, como el agua y los bosques, toman un tiempo comparativamente más prolongado para renovarse, y son susceptibles al agotamiento por el exceso de uso. Los recursos desde una perspectiva de uso humano se clasifican como renovables sólo mientras la tasa de reposición o recuperación sea superior a la de la tasa de consumo.





RECURSOS NO RENOVABLES

Son recursos que se forman muy lentamente y aquellos que no se forman naturalmente en el medio ambiente. Los minerales son los recursos más comunes incluidos en esta categoría. 
Desde la perspectiva humana, los recursos no son renovables cuando su tasa de consumo supera la tasa de reposición o recuperación; un buen ejemplo de esto son los combustibles fósiles, que pertenecen a esta categoría, ya que su velocidad de formación es extremadamente lenta (potencialmente millones de años), lo que significa que se consideran no renovables. Esto implica que al ser utilizados, no puedan ser regenerados. De estos, los minerales metálicos pueden reutilizarse a través de su reciclaje. Pero el carbón y el petróleo no pueden reciclarse.





3. DISTRIBUCIÓN GEOGRÁFICA EN EL PERÚ

EL AGUA

El agua, al mismo tiempo que constituye el líquido más abundante en la Tierra, representa el recurso natural más importante y la base de toda forma de vida.
El agua puede ser considerada como un recurso renovable cuando se controla cuidadosamente su uso, tratamiento, liberación, circulación. De lo contrario es un recurso no renovable en una localidad determinada.

No es usual encontrar el agua pura en forma natural, aunque en el laboratorio puede llegar a obtenerse o separarse en sus elementos constituyentes, que son el hidrógeno (H) y el oxígeno (O). Cada molécula de agua está formada por un átomo de oxígeno y dos de hidrógeno, unidos fuertemente en la forma H-O-H.


En nuestro planeta las aguas ocupan una alta proporción en relación con las tierras emergidas, y se presentan en diferentes formas:
  • Mares y océanos, que contienen una alta concentración de sales y que llegan a cubrir un 71% de la superficie terrestre;
  • Aguas superficiales, que comprenden ríos, lagunas y lagos;
  • Aguas del subsuelo, también llamadas aguas subterráneas, por fluir por debajo de la superficie terrestre.
  • Aproximadamente 97% del agua del planeta es agua salina, en mares y océanos; apenas 3% del agua total es agua dulce (no salina) y de esa cantidad un poco más de dos terceras partes se encuentra congelada en los glaciares y casquetes helados en los polos y altas montañas.





EL SUELO

Uno de los principales recursos que brinda la naturaleza al hombre es el suelo, ya que en él crecen y se desarrollan las plantas, tanto las silvestres como las que se cultivan para servir de alimento al hombre y los animales.

La formación de los suelos depende de un largo y complejo proceso de descomposición de las rocas, en el cual intervienen factores físicos, químicos y biológicos. La interacción de estos, como factores ecológicos, provoca la desintegración de los minerales que, unidos a los restos de animales y plantas en forma de materia orgánica, originan el suelo.

Los seres vivos intervienen en la destrucción de la roca madre y, además de los agentes climáticos, toman parte en la mezcla de sustancias del suelo, en su distribución horizontal, y añaden a éste materia orgánica. Las sustancias de desecho de animales y vegetales, así como los propios cuerpos de estos al morir, son las únicas fuentes de materia orgánica del suelo, la cual proporciona a éste algunos componentes esenciales, lo modifica de diferentes modos, y hace posible el crecimiento de fauna y flora variadas, que de otra manera no podrían existir.

Además, la materia orgánica incorporada al suelo almacena mayor cantidad de energía, obtenida del Sol por la fotosíntesis, que la materia inorgánica a partir de la cual se sintetizó. Por consiguiente, los seres vivos contribuyen a la formación del suelo aportando no solo materiales, sino también energía, tanto potencial como cinética.
La presencia de distintos tipos de minerales, las variaciones climáticas, la altura sobre el nivel del mar, la latitud geográfica y otros factores, determinan una gran variabilidad de los suelos, la cual se manifiesta en las características físicas y químicas de estos.

Otros fenómenos que se presentan en los suelos son el exceso de acidez y salinidad, los cuales imposibilitan la utilización óptima de los suelos.

  • Para evitar la degradación de los suelos es necesario:
  • Restituirles, por medio de la fertilización, los nutrientes que van siendo extraídos por las plantas o que son arrastrados por las aguas.
  • Evitar las talas y los desmontes desmedidos, así como las quemas, fundamentalmente en las laderas.
  • Preparar los surcos, en zonas de alta pendiente, en forma perpendicular a estas, de manera que el agua, al correr, no arrastre el suelo.
  • Proporcionar al suelo la cobertura vegetal necesaria para evitar la erosión.
  • Evitar la contaminación que provoca el uso indiscriminado de productos químicos en la actividad agrícola.



domingo, 22 de noviembre de 2015

SEMANA XIV

1. MOVIMIENTOS SÍSMICOS

Un movimiento sísmico es un movimiento vibratorio producido por la pérdida de estabilidad de masas de corteza. Cuando el movimiento llega a la superficie y se propaga por ésta le llamamos terremoto.



2. CAUSAS

La causa de un temblor es la liberación súbita de energía dentro del interior de la Tierra por un reacomodo de ésta. Este reacomodo se lleva a cabo mediante el movimiento relativo entre placas tectónicas. Las zonas en donde se lleva a cabo este tipo de movimiento se conocen como fallas geológicas.


3. EFECTO

Los efectos que producen los terremotos son las consecuencias del paso de las ondas sísmicas a través de las capas terrestres y de su llegada a la superficie. Los efectos pueden ser momentáneos como los rumores y maremotos, y permanentes como derrumbamientos de edificios, grietas, fallas dislocaciones, cambios hidrográficos, etc. 



4. UBICACIÓN DE FOCO (HIPOCENTRO)

El punto donde se origina el terremoto en el interior de nuestro
planeta es denominado hipocentro.
El hipocentro se localiza
frecuentemente entre 15 y 45 Km de la superficie, pero algunas
veces su profundidad se ha
calculado en más de 600 Km. 



5. UBICACIÓN DEL EPICENTRO

Se  ubica en la parte superior, en la misma dirección perpendicular del foco o hipocentro.



6. ZONAS SÍSMICAS

Las principales zonas sísmicas del mundo coinciden con los contornos de las placas tectónicas y con la posición de los volcanes activos de la Tierra. Esto se debe al hecho de que la causa de los terremotos y de las erupciones volcánicas está fuertemente relacionada con el proceso tectónico del Planeta. Los tres principales cinturones sísmicos del Mundo son: el cinturón Circunpacífico, el cinturón Transasiático (Himalaya, Irán, Turquía, Mar Mediterráneo, Sur de España) y el cinturón situado en el centro del Océano Atlántico.


7. LÍNEAS ISOSISTAS

Estas son líneas que se obtienen uniendo sobre un mapa los puntos en los que el sismo ha tenido la misma intensidad.
Determinado el efecto del terremoto en  cada punto donde se ha sentido, e indicándolo por una cota sísmica que es precisamente el grado antes aludido, podemos unir en un mapa todos los puntos de igual intensidad, y así obtendremos una serie de curvas, cada una de las cuales correspondiente a un grado, que se llaman isosistas, y que nos darán una idea gráfica de los efectos del terremoto y de su intensidad, la cual será tanto mayor cuanto más alto sea el grado de la isosista próxima al epicentro.


8. ESCALAS SÍSMICAS

Las dos escalas sísmicas más utilizadas son la de Mercalli y la de Richter. Aunque la primera ha sido muy utilizada, en la actualidad va perdiendo importancia en favor de la segunda.

Escala de Mercalli

Es una escala subjetiva y mide la intensidad de un terremoto. Tiene 12 grados establecidos en función de las percepciones y de los daños provocados por el terremoto a los bienes humanos.

Escala de Richter

Es una escala matemática y, por tanto objetiva. Mide la magnitud del terremoto y está relacionada con la energía liberada en el sismo.
Teóricamente no tiene límite, pero un 9 en esta escala equivaldría a un Grado XII de Mercalli, es decir "destrucción total". Se basa en la amplitud de la onda registrada en un sismógrafo situado a menos de 100 km del epicentro.

9. MAGNITUD DE UN SISMO

La magnitud es una medida del tamaño del terremoto.
Es un indicador de la energía que ha liberado y su valor es, "en teoría" al menos, independiente del procedimiento físico - matemático empleado para medirla y del punto donde se tome la lectura.

10. INTENSIDAD DE UN SISMO

Por el contrario, la intensidad es una medida del tamaño del terremoto basada en los efectos que produce (sobre las personas, los objetos, las construcciones y el terreno). 
La intensidad en cada punto dependerá de la magnitud y otros parámetros de la fuente sísmica, distancia al epicentro, caminos seguidos por las ondas y lugar de llegada de las mismas.

11. DESCRIPCIÓN DE LOS GRADOS DE INTENSIDAD 

ESCALA DE MERCALLI MODIFICADA:
Grado
Intensidad
Efectos
I
Instrumental
Registrado sólo por sismógrafos.
II
Muy débil
Percibido por algunas personas en pisos altos.
III
Ligero
Perceptible en interiores, los objetos suspendidos se balancean, similar al paso de un camión.
IV
Moderado
Percibido por la mayoría de las personas en la calle y en interiores, oscilación de objetos colgantes, ventanas y cristalería crujen.
V
Algo fuerte
Despiertan las personas dormidas, algunos objetos caen, cuadros, puertas y contraventanas se balancean.
VI
Fuerte
Los muebles se mueven, los cuadros se caen, los platos y la cristalería se rompen, las campanas suenan solas y algunas chimeneas se derrumban, los tabiques se resquebrajan.
VII
Muy fuerte
Es difícil mantenerse en pie, se caen los aleros de los tejados, tejas chimeneas y cornisas de edificios, se forman olas en los estanques. Suenan todas las campanas.
VIII
Destructivo
Caen algunas estatuas y muros, torres y edificios son deteriorados. Aparecen grietas en suelos húmedos y en taludes abruptos. Cambian los niveles de los acuíferos.
IX
Ruinoso
Pánico general, las casas comienzan a caer, grietas en el suelo, raíles de tren deformados, puentes y conducciones subterráneas rotas.
X
Desastroso
Pánico general. Muchos edificios destruidos, graves daños en presas. Desprendimientos de tierras, desbordamientos de ríos, canales, lagos, etc.
XI
Muy desastroso
Pánico general. Pocos edificios en pie, raíles muy deformados, conducciones subterráneas inservibles. Aparecen fallas en el terreno de salto apreciable.
XII
Catastrófico
Destrucción total, los objetos son lanzados al aire, desplazamiento de grandes masas rocosas. La topografía queda cambiada.

















































Magnitud en Escala Richter 
Efectos del terremoto
 Menos de 3.5
Generalmente no se siente, pero es  registrado.
3.5 - 5.4
A menudo se siente, pero sólo causa daños menores.
5.5 - 6.0 
Ocasiona daños ligeros a edificios.
 6.1 - 6.9 
Puede ocasionar daños severos en áreas muy pobladas. 
7.0 - 7.9
Terremoto mayor. Causa graves daños.
8  o mayor
Gran terremoto. Destrucción total a comunidades  cercanas.

12. TERREMOTO

Un terremoto es el movimiento brusco de la Tierra causado por la brusca liberación de energía acumulada durante un largo tiempo. La corteza de la Tierra está conformada por una docena de placas de aproximadamente 70 km de grosor, cada una con diferentes características físicas y químicas.




13. MEDICIÓN DE TERREMOTOS

Se realiza a través de un instrumento llamado sismógrafo, el que registra en un papel la vibración de la Tierra producida por el sismo (sismograma). Nos informa la magnitud y la duración.
Este instrumento registra dos tipos de ondas: las superficiales, que viajan a través de la superficie terrestre y que producen la mayor vibración de ésta (y probablemente el mayor daño) y las centrales o corporales, que viajan a través de la Tierra desde su profundidad.



14. ESTRUCTURA INTERNA DE LA CORTEZA TERRESTE

Las  tres capas principales del planeta: corteza, manto y núcleo

El estudio de los terremotos ha permitido definir el interior de la Tierra y distinguir tres capas principales, desde la superficie avanzando en profundidad, en función de la velocidad de propagación de las ondas sísmicas.
Dichas capas, apreciables en un corte transversal, son: corteza, manto y núcleo. También la información que nos proporcionan los meteoritos puede ser de gran utilidad para conocer la composición de los materiales del interior de la Tierra.


15. RIESGOS SÍSMICOS

El riesgo sísmico depende fuertemente de la cantidad y tipo de asentamientos humanos del lugar. Aunque el peligro potencial sísmico es muy alto en Yakutat (Alaska), el riesgo sísmico es pequeño porque es una región muy deshabitada. En cambio, el peligro sísmico no es tan grande en  Managua, porque allí los grandes sismos no suelen ser tan frecuentes como en Yakutat.